707 research outputs found

    Low field phase diagram of spin-Hall effect in the mesoscopic regime

    Get PDF
    When a mesoscopic two dimensional four-terminal Hall cross-bar with Rashba and/or Dresselhaus spin-orbit interaction (SOI) is subjected to a perpendicular uniform magnetic field BB, both integer quantum Hall effect (IQHE) and mesoscopic spin-Hall effect (MSHE) may exist when disorder strength WW in the sample is weak. We have calculated the low field "phase diagram" of MSHE in the (B,W)(B,W) plane for disordered samples in the IQHE regime. For weak disorder, MSHE conductance GsHG_{sH} and its fluctuations rms(GSH)rms(G_{SH}) vanish identically on even numbered IQHE plateaus, they have finite values on those odd numbered plateaus induced by SOI, and they have values GSH=1/2G_{SH}=1/2 and rms(GSH)=0rms(G_{SH})=0 on those odd numbered plateaus induced by Zeeman energy. For moderate disorder, the system crosses over into a regime where both GsHG_{sH} and rms(GSH)rms(G_{SH}) are finite. A larger disorder drives the system into a chaotic regime where GsH=0G_{sH}=0 while rms(GSH)rms(G_{SH}) is finite. Finally at large disorder both GsHG_{sH} and rms(GSH)rms(G_{SH}) vanish. We present the physics behind this ``phase diagram".Comment: 4 page, 3 figure

    Universal spin-Hall conductance fluctuations in two dimensions

    Full text link
    We report a theoretical investigation on spin-Hall conductance fluctuation of disordered four terminal devices in the presence of Rashba or/and Dresselhaus spin-orbital interactions in two dimensions. As a function of disorder, the spin-Hall conductance GsHG_{sH} shows ballistic, diffusive and insulating transport regimes. For given spin-orbit interactions, a universal spin-Hall conductance fluctuation (USCF) is found in the diffusive regime. The value of the USCF depends on the spin-orbit coupling tsot_{so}, but is independent of other system parameters. It is also independent of whether Rashba or Dresselhaus or both spin-orbital interactions are present. When tsot_{so} is comparable to the hopping energy tt, the USCF is a universal number ∼0.18e/4π\sim 0.18 e/4\pi. The distribution of GsHG_{sH} crosses over from a Gaussian distribution in the metallic regime to a non-Gaussian distribution in the insulating regime as the disorder strength is increased.Comment: to be published in Phys. Rev. Lett., 4 figure

    Universal quantized spin-Hall conductance fluctuation in graphene

    Full text link
    We report a theoretical investigation of quantized spin-Hall conductance fluctuation of graphene devices in the diffusive regime. Two graphene models that exhibit quantized spin-Hall effect (QSHE) are analyzed. Model-I is with unitary symmetry under an external magnetic field B≠0B\ne 0 but with zero spin-orbit interaction, tSO=0t_{SO}=0. Model-II is with symplectic symmetry where B=0 but tSO≠0t_{SO} \ne 0. Extensive numerical calculations indicate that the two models have exactly the same universal QSHE conductance fluctuation value 0.285e/4π0.285 e/4\pi regardless of the symmetry. Qualitatively different from the conventional charge and spin universal conductance distributions, in the presence of edge states the spin-Hall conductance shows an one-sided log-normal distribution rather than a Gaussian distribution. Our results strongly suggest that the quantized spin-Hall conductance fluctuation belongs to a new universality class

    Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs

    Get PDF
    Background: Cyclin-dependent kinases (CDKs) are a large family of proteins that function in a variety of key regulatory pathways in eukaryotic cells, including control over the cell cycle and gene transcription. Among the most important and broadly studied of these roles is reversible phosphorylation of the C-terminal domain (CTD) of RNA polymerase II, part of a complex array of CTD/protein interactions that coordinate the RNAP II transcription cycle. The RNAP CTD is strongly conserved in some groups of eukaryotes, but highly degenerate or absent in others; the reasons for these differences in stabilizing selection on CTD structure are not clear. Given the importance of reversible phosphorylation for CTD-based transcription, the distribution and evolutionary history of CDKs may be a key to understanding differences in constraints on CTD structure; however, the origins and evolutionary relationships of CTD kinases have not been investigated thoroughly. Moreover, although the functions of most CDKs are reasonably well studied in mammals and yeasts, very little is known from most other eukaryotes. Results: Here we identify 123 CDK family members from animals, plants, yeasts, and four protists from which genome sequences have been completed, and 10 additional CDKs from incomplete genome sequences of organisms with known CTD sequences. Comparative genomic and phylogenetic analyses suggest that cell-cycle CDKs are present in all organisms sampled in this study. In contrast, no clear orthologs of transcription-related CDKs are identified in the most putatively ancestral eukaryotes, Trypanosoma or Giardia. Kinases involved in CTD phosphorylation, CDK7, CDK8 and CDK9, all are recovered as well-supported and distinct orthologous families, but their relationships to each other and other CDKs are not well-resolved. Significantly, clear orthologs of CDK7 and CDK8 are restricted to only those organisms belonging to groups in which the RNAP II CTD is strongly conserved. Conclusions: The apparent origins of CDK7 and CDK8, or at least their conservation as clearly recognizable orthologous families, correlate with strong stabilizing selection on RNAP II CTD structure. This suggests coevolution of the CTD and these CTD-directed CDKs. This observation is consistent with the hypothesis that CDK7 and CDK8 originated at about the same time that the CTD was canalized as the staging platform RNAP II transcription. Alternatively, extensive CTD phosphorylation may occur in only a subset of eukaryotes and, when present, this interaction results in greater stabilizing selection on both CTD and CDK sequences. Overall, our results suggest that transcription-related kinases originated after cell-cycle related CDKs, and became more evolutionarily and functionally diverse as transcriptional complexity increased. Originally published BMC Genomics, Vol. 5, No. 69, Sep 200

    Evolutionary conservation of microRNA regulatory programs in plant flower development

    Get PDF
    AbstractMicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. Flowering is critical for the reproduction of angiosperms. Flower development entails the transition from vegetative growth to reproductive growth, floral organ initiation, and the development of floral organs. These developmental processes are genetically regulated by miRNAs, which participate in complex genetic networks of flower development. A survey of the literature shows that miRNAs, their specific targets, and the regulatory programs in which they participate are conserved throughout the plant kingdom. This review summarizes the role of miRNAs and their targets in the regulation of gene expression during the floral developmental phase, which includes the floral transition stage, followed by floral patterning, and then the development of floral organs. The conservation patterns observed in each component of the miRNA regulatory system suggest that these miRNAs play important roles in the evolution of flower development
    • …
    corecore